Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(49): e2203241120, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38015839

RESUMEN

The Lysinibacillus sphaericus proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito Culex quinquefasciatus and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.62 Å resolution. This revealed the packing of Tpp49Aa1 within these natural nanocrystals as a homodimer with a large intermolecular interface. Complementary experiments conducted at varied pH also enabled investigation of the early structural events leading up to the dissolution of natural Tpp49Aa1 crystals-a crucial step in its mechanism of action. To better understand the cooperation between the two proteins, assays were performed on a range of different mosquito cell lines using both individual proteins and mixtures of the two. Finally, bioassays demonstrated Tpp49Aa1/Cry48Aa1 susceptibility of Anopheles stephensi, Aedes albopictus, and Culex tarsalis larvae-substantially increasing the potential use of this binary toxin in mosquito control.


Asunto(s)
Bacillaceae , Bacillus , Culex , Plaguicidas , Animales , Bacillaceae/química , Bacillaceae/metabolismo , Control de Mosquitos , Larva/metabolismo
2.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37279443

RESUMEN

Bacillus thuringiensis (Bt) proteins are an environmentally safe and effective alternative to chemical pesticides and have been used as biopesticides, with great commercial success, for over 50 years. Global agricultural production is predicted to require a 70% increase until 2050 to provide for an increasing population. In addition to agriculture, Bt proteins are utilized to control human vectors of disease-namely mosquitoes-which account for >700 000 deaths annually. The evolution of resistance to Bt pesticial toxins threatens the progression of sustainable agriculture. Whilst Bt protein toxins are heavily utilized, the exact mechanisms behind receptor binding and toxicity are unknown. It is critical to gain a better understanding of these mechanisms in order to engineer novel toxin variants and to predict, and prevent, future resistance evolution. This review focuses on the role of carbohydrate binding in the toxicity of the most utilized group of Bt pesticidal proteins-three domain Cry (3D-Cry) toxins.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Animales , Humanos , Insecticidas/metabolismo , Endotoxinas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/toxicidad , Mosquitos Vectores , Toxinas de Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/genética , Glicoconjugados
3.
J Cell Sci ; 136(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36825945

RESUMEN

Abnormalities in the endosomal-autophagic-lysosomal (EAL) system are an early event in Alzheimer's disease (AD) pathogenesis. However, the mechanisms underlying these abnormalities are unclear. The transient receptor potential channel mucolipin 1(TRPML1, also known as MCOLN1), a vital endosomal-lysosomal Ca2+ channel whose loss of function leads to neurodegeneration, has not been investigated with respect to EAL pathogenesis in late-onset AD (LOAD). Here, we identify pathological hallmarks of TRPML1 dysregulation in LOAD neurons, including increased perinuclear clustering and vacuolation of endolysosomes. We reveal that induced pluripotent stem cell (iPSC)-derived human cortical neurons expressing APOE ε4, the strongest genetic risk factor for LOAD, have significantly diminished TRPML1-induced endolysosomal Ca2+ release. Furthermore, we found that blocking TRPML1 function in primary neurons by depleting the TRPML1 agonist PI(3,5)P2 via PIKfyve inhibition, recreated multiple features of EAL neuropathology evident in LOAD. This included increased endolysosomal Ca2+ content, enlargement and perinuclear clustering of endolysosomes, autophagic vesicle accumulation and early endosomal enlargement. Strikingly, these AD-like neuronal EAL defects were rescued by TRPML1 reactivation using its synthetic agonist ML-SA1. These findings implicate defects in TRPML1 in LOAD EAL pathogenesis and present TRPML1 as a potential therapeutic target.


Asunto(s)
Enfermedad de Alzheimer , Canales de Potencial de Receptor Transitorio , Humanos , Calcio/metabolismo , Enfermedad de Alzheimer/patología , Canales de Potencial de Receptor Transitorio/genética , Lisosomas/metabolismo , Autofagia
4.
Toxins (Basel) ; 14(12)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36548760

RESUMEN

Tpp80Aa1 from Bacillus thuringiensis is a Toxin_10 family protein (Tpp) with reported action against Culex mosquitoes. Here, we demonstrate an expanded target range, showing Tpp80Aa1 is also active against the larvae of Anopheles gambiae and Aedes aegypti mosquitoes. We report the first crystal structure of Tpp80Aa1 at a resolution of 1.8 Å, which shows Tpp80Aa1 consists of two domains: an N-terminal ß-trefoil domain resembling a ricin B lectin and a C-terminal putative pore-forming domain sharing structural similarity with the aerolysin family. Similar to other Tpp family members, we observe Tpp80Aa1 binds to the mosquito midgut, specifically the posterior midgut and the gastric caecum. We also identify that Tpp80Aa1 can interact with galactose-containing glycolipids and galactose, and this interaction is critical for exerting full insecticidal action against mosquito target cell lines.


Asunto(s)
Aedes , Bacillus thuringiensis , Culex , Insecticidas , Animales , Bacillus thuringiensis/metabolismo , Galactosa/metabolismo , Aedes/metabolismo , Insecticidas/química , Culex/metabolismo , Proteínas Bacterianas/metabolismo , Larva/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo
5.
EMBO J ; 40(17): e105603, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34254352

RESUMEN

Variants identified in genome-wide association studies have implicated immune pathways in the development of Alzheimer's disease (AD). Here, we investigated the mechanistic basis for protection from AD associated with PLCγ2 R522, a rare coding variant of the PLCG2 gene. We studied the variant's role in macrophages and microglia of newly generated PLCG2-R522-expressing human induced pluripotent cell lines (hiPSC) and knockin mice, which exhibit normal endogenous PLCG2 expression. In all models, cells expressing the R522 mutation show a consistent non-redundant hyperfunctionality in the context of normal expression of other PLC isoforms. This manifests as enhanced release of cellular calcium ion stores in response to physiologically relevant stimuli like Fc-receptor ligation or exposure to Aß oligomers. Expression of the PLCγ2-R522 variant resulted in increased stimulus-dependent PIP2 depletion and reduced basal PIP2 levels in vivo. Furthermore, it was associated with impaired phagocytosis and enhanced endocytosis. PLCγ2 acts downstream of other AD-related factors, such as TREM2 and CSF1R, and alterations in its activity directly impact cell function. The inherent druggability of enzymes such as PLCγ2 raises the prospect of PLCγ2 manipulation as a future therapeutic approach in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Endocitosis , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteína Quinasa C/genética , Péptidos beta-Amiloides/metabolismo , Animales , Línea Celular , Células Cultivadas , Humanos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación Missense , Neuroglía/metabolismo , Proteína Quinasa C/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-33892149

RESUMEN

Niemann-Pick disease type C (NPC) is a complex and rare pathology, which is mainly associated to mutations in the NPC1 gene. This disease is phenotypically characterized by the abnormal accumulation of multiple lipid species in the acidic compartments of the cell. Due to the complexity of stored material, a clear molecular mechanism explaining NPC pathophysiology is still not established. Abnormal sphingosine accumulation was suggested as the primary factor involved in the development of NPC, followed by the accumulation of other lipid species. To provide additional mechanistic insight into the role of sphingosine in NPC development, fluorescence spectroscopy and microscopy were used to study the biophysical properties of biological membranes using different cellular models of NPC. Addition of sphingosine to healthy CHO-K1 cells, in conditions where other lipid species are not yet accumulated, caused a rapid decrease in plasma membrane and lysosome membrane fluidity, suggesting a direct effect of sphingosine rather than a downstream event. Changes in membrane fluidity caused by addition of sphingosine were partially sustained upon impaired trafficking and metabolization of cholesterol in these cells, and could recapitulate the decrease in membrane fluidity observed in NPC1 null Chinese Hamster Ovary (CHO) cells (CHO-M12) and in cells with pharmacologically induced NPC phenotype (treated with U18666A). In summary, these results show for the first time that the fluidity of the membranes is altered in models of NPC and that these changes are in part caused by sphingosine, supporting the role of this lipid in the pathophysiology of NPC.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C/patología , Esfingolípidos/metabolismo , Esfingosina/metabolismo , Animales , Células CHO , Membrana Celular/metabolismo , Colesterol/metabolismo , Cricetulus , Endosomas/metabolismo , Lisosomas/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Fenotipo
7.
Histochem Cell Biol ; 154(5): 565-578, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33079236

RESUMEN

Lysosomal storage diseases are the most common cause of neurodegeneration in children. They are characterised at the cellular level by the accumulation of storage material within lysosomes. There are very limited therapeutic options, and the search for novel therapies has been hampered as few good small animal models are available. Here, we describe the use of light sheet microscopy to assess lipid storage in drug and morpholino induced zebrafish models of two diseases of cholesterol homeostasis with lysosomal dysfunction: First, Niemann-Pick type C disease (NPC), caused by mutations in the lysosomal transmembrane protein NPC1, characterised by intralysosomal accumulation of cholesterol and several other lipids. Second, Smith-Lemli-Opitz syndrome (SLOS), caused by mutations in 7-dehydrocholesterol reductase, which catalyses the last step of cholesterol biosynthesis and is characterised by intralysosomal accumulation of dietary cholesterol. This is the first description of a zebrafish SLOS model. We find that zebrafish accurately model lysosomal storage and disease-specific phenotypes in both diseases. Increased cholesterol and ganglioside GM1 were observed in sections taken from NPC model fish, and decreased cholesterol in SLOS model fish, but these are of limited value as resolution is poor, and accurate anatomical comparisons difficult. Using light sheet microscopy, we were able to observe lipid changes in much greater detail and identified an unexpected accumulation of ganglioside GM1 in SLOS model fish. Our data demonstrate, for the first time in zebrafish, the immense potential that light sheet microscopy has in aiding the resolution of studies involving lysosomal and lipid disorders.


Asunto(s)
Colesterol/análisis , Modelos Animales de Enfermedad , Gangliósido G(M1)/análisis , Enfermedad de Niemann-Pick Tipo C/diagnóstico , Síndrome de Smith-Lemli-Opitz/diagnóstico , Pez Cebra , Animales , Colesterol/metabolismo , Gangliósido G(M1)/metabolismo , Lisosomas/metabolismo , Microscopía Fluorescente , Enfermedad de Niemann-Pick Tipo C/metabolismo , Síndrome de Smith-Lemli-Opitz/metabolismo
8.
J Med Internet Res ; 22(10): e19791, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32915763

RESUMEN

BACKGROUND: The ongoing pandemic has placed an unprecedented strain on global society, health care, governments, and mass media. Public dissemination of government policies, medical interventions, and misinformation has been remarkably rapid and largely unregulated during the COVID-19 pandemic, resulting in increased misinterpretations, miscommunication, and public panic. Being the first full-scale global pandemic of the digital age, COVID-19 has presented novel challenges pertinent to government advice, the spread of news and misinformation, and the trade-off between the accessibility of science and the premature public use of unproven medical interventions. OBJECTIVE: This study aims to assess the use of internet search terms relating to COVID-19 information and misinformation during the global pandemic, identify which were most used in six affected countries, investigate any temporal trends and the likely propagators of key search terms, and determine any correlation between the per capita cases and deaths with the adoption of these search terms in each of the six countries. METHODS: This study uses relative search volume data extracted from Google Trends for search terms linked to the COVID-19 pandemic alongside per capita case and mortality data extracted from the European Open Data Portal to identify the temporal dynamics of the spread of news and misinformation during the global pandemic in six affected countries (Australia, Germany, Italy, Spain, the United Kingdom, and the United States). A correlation analysis was carried out to ascertain any correlation between the temporal trends of search term use and the rise of per capita mortality and disease cases. RESULTS: Of the selected search terms, most were searched immediately following promotion by governments, public figures, or viral circulation of information, but also in relation to the publication of scientific resources, which were sometimes misinterpreted before further dissemination. Strong correlations were identified between the volume of these COVID-19-related search terms (overall mean Spearman rho 0.753, SD 0.158), and per capita mortality (mean per capita deaths Spearman rho 0.690, SD 0.168) and cases (mean per capita cases Spearman rho 0.800, SD 0.112). CONCLUSIONS: These findings illustrate the increased rate and volume of the public consumption of novel information during a global health care crisis. The positive correlation between mortality and online searching, particularly in countries with lower COVID-19 testing rates, may demonstrate the imperative to safeguard official communications and dispel misinformation in these countries. Online news, government briefings, and social media provide a powerful tool for the dissemination of important information to the public during pandemics, but their misuse and the presentation of misrepresented medical information should be monitored, minimized, and addressed to safeguard public safety. Ultimately, governments, public health authorities, and scientists have a moral imperative to safeguard the truth and maintain an accessible discourse with the public to limit fear.


Asunto(s)
Comunicación , Infecciones por Coronavirus/epidemiología , Educación en Salud/estadística & datos numéricos , Internacionalidad , Internet , Medios de Comunicación de Masas/estadística & datos numéricos , Neumonía Viral/epidemiología , Betacoronavirus , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Salud Global , Educación en Salud/normas , Humanos , Pandemias , Salud Pública , SARS-CoV-2 , Medios de Comunicación Sociales
9.
Essays Biochem ; 64(3): 591-606, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32756865

RESUMEN

Neurosteroids are steroid hormones synthesised de novo in the brain and peripheral nervous tissues. In contrast to adrenal steroid hormones that act on intracellular nuclear receptors, neurosteroids directly modulate plasma membrane ion channels and regulate intracellular signalling. This review provides an overview of the work that led to the discovery of neurosteroids, our current understanding of their intracellular biosynthetic machinery, and their roles in regulating the development and function of nervous tissue. Neurosteroids mediate signalling in the brain via multiple mechanisms. Here, we describe in detail their effects on GABA (inhibitory) and NMDA (excitatory) receptors, two signalling pathways of opposing function. Furthermore, emerging evidence points to altered neurosteroid function and signalling in neurological disease. This review focuses on neurodegenerative diseases associated with altered neurosteroid metabolism, mainly Niemann-Pick type C, multiple sclerosis and Alzheimer disease. Finally, we summarise the use of natural and synthetic neurosteroids as current and emerging therapeutics alongside their potential use as disease biomarkers.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Esclerosis Múltiple/metabolismo , Neuroesteroides/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Sistema Nervioso Periférico/metabolismo , Transducción de Señal , Animales , Humanos , Membranas Mitocondriales/metabolismo , Receptores de GABA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
10.
AMRC Open Res ; 2: 21, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32490352

RESUMEN

Good's buffers are commonly used for cell culture and, although developed to have minimal to no biological impact, they cause alterations in cellular processes such as autophagy and lysosomal enzyme activity. Using Chinese hamster ovary cells and induced pluripotent stem cell-derived neurons, this study explores the effect of zwitterionic buffers, specifically HEPES, on lysosomal volume and Ca2+ levels. Certain zwitterionic buffers lead to lysosomal expansion and reduced lysosomal Ca2+. Care should be taken when selecting buffers for growth media to avoid detrimental impacts on lysosomal function.

11.
Chem Sci ; 11(6): 1599-1606, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32206278

RESUMEN

A nuclear localisation sequence (NLS) peptide, PAAKRVKLD, derived from the human c-Myc regulator gene, has been functionalised with a long wavelength (λ ex = 550 nm; λ em = 677 nm) cyclometalated organometallic iridium(iii) complex to give the conjugate Ir-CMYC. Confocal fluorescence microscopy studies on human fibroblast cells imaged after 18-24 h incubation show that Ir-CMYC concentrations of 80-100 µM promote good cell uptake and nuclear localisation, which was confirmed though co-localisation studies using Hoechst 33342. In comparison, a structurally related, photophysically analogous iridium(iii) complex lacking the peptide sequence, Ir-PYR, showed very different biological behaviour, with no evidence of nuclear, lysosomal or autophagic vesicle localisation and significantly increased toxicity to the cells at concentrations >10 µM that induced mitochondrial dysfunction. Supporting UV-visible and circular dichroism spectroscopic studies show that Ir-PYR and Ir-CMYC display similarly low affinities for DNA (ca. 103 M-1), consistent with electrostatic binding. Therefore the translocation and nuclear uptake properties of Ir-CMYC are attributed to the presence of the PAAKRVKLD nuclear localisation sequence in this complex.

12.
Artículo en Inglés | MEDLINE | ID: mdl-31653642

RESUMEN

Calcium (Ca2+) signaling is an essential process in all cells that is maintained by a plethora of channels, pumps, transporters, receptors, and intracellular Ca2+ sequestering stores. Changes in cytosolic Ca2+ concentration govern processes as far reaching as fertilization, cell growth, and motility through to cell death. In recent years, lysosomes have emerged as a major intracellular Ca2+ storage organelle with an increasing involvement in triggering or regulating cellular functions such as endocytosis, autophagy, and Ca2+ release from the endoplasmic reticulum. This review will summarize recent work in the area of lysosomal Ca2+ signaling and homeostasis, including newly identified functions, and the involvement of lysosome-derived Ca2+ signals in human disease. In addition, we explore recent controversies in the techniques used for measurement of lysosomal Ca2+ content.


Asunto(s)
Calcio/metabolismo , Lisosomas/metabolismo , Transducción de Señal , Animales , Autofagia , Señalización del Calcio/fisiología , Citosol/metabolismo , Endocitosis , Retículo Endoplásmico/metabolismo , Homeostasis , Humanos , Iones , Proteínas de Transporte de Membrana/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
13.
Prog Lipid Res ; 74: 18-30, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30710597

RESUMEN

Beyond guarding the cellular proteome the major stress inducible heat shock protein Hsp70 has been shown to interact with lipids. Non-cytosolic Hsp70 stabilizes membranes during stress challenges and, in pathophysiological states, facilitates endocytosis, counteracts apoptotic mechanisms, sustains survival pathways or represents a signal that can be recognized by the immune system. Disease-coupled lipid-associated functions of Hsp70 may be targeted via distinct subcellular localizations of Hsp70 itself or its specific interacting lipids. With a special focus on interacting lipids, here we discuss localization-dependent roles of the membrane-bound Hsp70 in the context of its therapeutic potential, particularly in cancer and neurodegenerative diseases.


Asunto(s)
Membrana Celular/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Lípidos de la Membrana/metabolismo , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Humanos , Neoplasias/patología , Enfermedades Neurodegenerativas/patología
14.
Am J Hum Genet ; 103(5): 794-807, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30401460

RESUMEN

Ca2+ signaling is vital for various cellular processes including synaptic vesicle exocytosis, muscle contraction, regulation of secretion, gene transcription, and cellular proliferation. The endoplasmic reticulum (ER) is the largest intracellular Ca2+ store, and dysregulation of ER Ca2+ signaling and homeostasis contributes to the pathogenesis of various complex disorders and Mendelian disease traits. We describe four unrelated individuals with a complex multisystem disorder characterized by woolly hair, liver dysfunction, pruritus, dysmorphic features, hypotonia, and global developmental delay. Through whole-exome sequencing and family-based genomics, we identified bi-allelic variants in CCDC47 that encodes the Ca2+-binding ER transmembrane protein CCDC47. CCDC47, also known as calumin, has been shown to bind Ca2+ with low affinity and high capacity. In mice, loss of Ccdc47 leads to embryonic lethality, suggesting that Ccdc47 is essential for early development. Characterization of cells from individuals with predicted likely damaging alleles showed decreased CCDC47 mRNA expression and protein levels. In vitro cellular experiments showed decreased total ER Ca2+ storage, impaired Ca2+ signaling mediated by the IP3R Ca2+ release channel, and reduced ER Ca2+ refilling via store-operated Ca2+ entry. These results, together with the previously described role of CCDC47 in Ca2+ signaling and development, suggest that bi-allelic loss-of-function variants in CCDC47 underlie the pathogenesis of this multisystem disorder.

15.
Acta Neuropathol Commun ; 6(1): 74, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089511

RESUMEN

The neuronal ceroid lipofuscinoses (NCLs) are the most common cause of childhood dementia and are invariably fatal. Early localized glial activation occurs in these disorders, and accurately predicts where neuronal loss is most pronounced. Recent evidence suggests that glial dysfunction may contribute to neuron loss, and we have now explored this possibility in infantile NCL (INCL, CLN1 disease). We grew primary cultures of astrocytes, microglia, and neurons derived from Ppt1 deficient mice (Ppt1-/-) and assessed their properties compared to wildtype (WT) cultures, before co-culturing them in different combinations (astrocytes with microglia, astrocytes or microglia with neurons, all three cell types together). These studies revealed that both Ppt1-/- astrocytes and microglia exhibit a more activated phenotype under basal unstimulated conditions, as well as alterations to their protein expression profile following pharmacological stimulation. Ppt1- /- astrocytes also displayed abnormal calcium signalling and an elevated cytoplasmic Ca2+ level, and a profound defect in their survival. Ppt1-/- neurons displayed decreased neurite outgrowth, altered complexity, a reduction in cell body size, and impaired neuron survival with prolonged time in culture. In co-cultures, the presence of both astrocytes and microglia from Ppt1-/- mice further impaired the morphology of both wild type and Ppt1-/- neurons. This negative influence was more pronounced for Ppt1-/- microglia, which appeared to trigger increased Ppt1-/- neuronal death. In contrast, wild type glial cells, especially astrocytes, ameliorated some of the morphological defects observed in Ppt1-/- neurons. These findings suggest that both Ppt1-/- microglia and astrocytes are dysfunctional and may contribute to the neurodegeneration observed in CLN1 disease. However, the dysfunctional phenotypes of Ppt1-/- glia are different from those present in CLN3 disease, suggesting that the pathogenic role of glia may differ between NCLs.


Asunto(s)
Astrocitos/patología , Lipofuscinosis Ceroideas Neuronales/patología , Neuronas/patología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Técnicas de Cocultivo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Lipofuscinosis Ceroideas Neuronales/genética , Neuronas/efectos de los fármacos , Tioléster Hidrolasas/deficiencia , Tioléster Hidrolasas/genética , Factores de Tiempo
16.
Wellcome Open Res ; 1: 18, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-28008422

RESUMEN

BACKGROUND: Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis, achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with persistent mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC. METHODS: The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed. RESULTS: Macrophages infected with persistent intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that persistent intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria from infected host cells. CONCLUSION: These findings provide a novel mechanistic explanation for mycobacterial intracellular persistence, and suggest that targeting interactions between the mycobacteria and host cell pathways may provide a novel avenue for development of anti-TB therapies.

17.
Ageing Res Rev ; 32: 104-121, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27516378

RESUMEN

Lysosomal storage diseases and diseases of ageing share many features both at the physiological level and with respect to the mechanisms that underlie disease pathogenesis. Although the exact pathophysiology is not exactly the same, it is astounding how many similar pathways are altered in all of these diseases. The aim of this review is to provide a summary of the shared disease mechanisms, outlining the similarities and differences and how genetics, insight into rare diseases and functional research has changed our perspective on the causes underlying common diseases of ageing. The lysosome should no longer be considered as just the stomach of the cell or as a suicide bag, it has an emerging role in cellular signalling, nutrient sensing and recycling. The lysosome is of fundamental importance in the pathophysiology of diseases of ageing and by comparing against the LSDs we not only identify common pathways but also therapeutic targets so that ultimately more effective treatments can be developed for all neurodegenerative diseases.


Asunto(s)
Envejecimiento/fisiología , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/fisiología , Enfermedades Neurodegenerativas/metabolismo , Humanos
18.
J Cell Biol ; 212(7): 755-7, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-27022089

RESUMEN

Acidic Ca(2+)stores are important sources of Ca(2+)during cell signaling but little is known about how Ca(2+)enters these stores. In this issue, Melchionda et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201510019) identify a Ca(2+)/H(+)exchanger (CAX) that is required for Ca(2+)uptake and cell migration in vertebrates.


Asunto(s)
Antiportadores/metabolismo , Calcio/metabolismo , Movimiento Celular , Hidrógeno/metabolismo , Cresta Neural/metabolismo , Orgánulos/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Humanos
19.
Messenger (Los Angel) ; 5(1-2): 37-55, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28593104

RESUMEN

Lysosomes have emerged in the last decade as an immensely important intracellular site of Ca2+ storage and signalling. More recently there has been an increase in the number of new ion channels found to be functional on lysosomes and the potential roles that these signalling pathways might play in fundamental cellular processes are being uncovered. Defects in lysosomal function have been shown to result in changes in lysosomal Ca2+ homeostasis and ultimately can result in cell death. Several neurodegenerative diseases, from rare lysosomal storage diseases through to more common diseases of ageing, have recently been identified as having alterations in lysosomal Ca2+ homeostasis that may play an important role in neuronal excitotoxicity and ultimately cell death. This review will critically summarise these recent findings.

20.
Hum Mol Genet ; 24(24): 6899-909, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26395456

RESUMEN

Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is characterized by a loss of distal peripheral sensory and motorneuronal function, neuropathic pain and tissue necrosis. The most common cause of HSAN1 is due to dominant mutations in serine palmitoyl-transferase subunit 1 (SPT1). SPT catalyses the condensation of serine with palmitoyl-CoA, the initial step in sphingolipid biogenesis. Identified mutations in SPT1 are known to both reduce sphingolipid synthesis and generate catalytic promiscuity, incorporating alanine or glycine into the precursor sphingolipid to generate a deoxysphingoid base (DSB). Why either loss of function in SPT1, or generation of DSBs should generate deficits in distal sensory function remains unclear. To address these questions, we generated a Drosophila model of HSAN1. Expression of dSpt1 bearing a disease-related mutation induced morphological deficits in synapse growth at the larval neuromuscular junction consistent with a dominant-negative action. Expression of mutant dSpt1 globally was found to be mildly toxic, but was completely toxic when the diet was supplemented with alanine, when DSBs were observed in abundance. Expression of mutant dSpt1 in sensory neurons generated developmental deficits in dendritic arborization with concomitant sensory deficits. A membrane trafficking defect was observed in soma of sensory neurons expressing mutant dSpt1, consistent with endoplasmic reticulum (ER) to Golgi block. We found that we could rescue sensory function in neurons expressing mutant dSpt1 by co-expressing an effector of ER-Golgi function, Rab1 suggesting compromised ER function in HSAN1 affected dendritic neurons. Our Drosophila model identifies a novel strategy to explore the pathological mechanisms of HSAN1.


Asunto(s)
Alanina/toxicidad , Neuropatías Hereditarias Sensoriales y Autónomas/fisiopatología , Proteínas de la Membrana/metabolismo , Animales , Animales Modificados Genéticamente , Dieta , Modelos Animales de Enfermedad , Drosophila , Retículo Endoplásmico/metabolismo , Genes Esenciales , Genes de Insecto , Aparato de Golgi/metabolismo , Neuropatías Hereditarias Sensoriales y Autónomas/inducido químicamente , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Neuropatías Hereditarias Sensoriales y Autónomas/metabolismo , Mutación , Unión Neuromuscular/metabolismo , Células Receptoras Sensoriales/metabolismo , Esfingolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...